Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270

نویسندگان

  • F J Abramcheck
  • W Van Driessche
  • S I Helman
چکیده

Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis.

The transepithelial chloride permeability of airway and sweat ductal epithelium has been reported to be decreased in patients with cystic fibrosis (CF). In the present study, we investigated whether the airway epithelial defect was in the cell path by characterizing the relative ion permeabilities of the apical membrane of respiratory epithelial cells from CF and normal subjects. Membrane elect...

متن کامل

Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis

To study the mechanisms by which antidiuretic hormone and prostaglandins regulate Na transport at the apical membranes of the cells of anuran tissues, studies were done with fluctuation analysis. Epithelia of frog skin (Rana pipiens) were treated with vasopressin alone, or treated with vasopressin after inhibition of Na transport by indomethacin. The tissues were bathed symmetrically with a Cl-...

متن کامل

Blocker-related changes of channel density. Analysis of a three-state model for apical Na channels of frog skin

Blocker-induced noise analysis of apical membrane Na channels of epithelia of frog skin was carried out with the electroneutral blocker (CDPC, 6-chloro-3,5-diamino-pyrazine-2-carboxamide) that permitted determination of the changes of single-channel Na currents and channel densities with minimal inhibition of the macroscopic rates of Na transport (Baxendale, L. M., and S. I. Helman. 1986. Bioph...

متن کامل

Time-dependent apical membrane K+ and Na+ selectivity in cultured kidney cells.

Intracellular microelectrodes were used to study apical membrane selectivity to Na+ and K+ of cultured toad kidney cells (A6) grown on permeable supports. Membrane selectivity was tested by responses of apical membrane potential to replacement of Na+ by K+ or tetraethylammonium and by addition of amiloride to perfusion solutions. The A6 epithelia fell into two groups: those with K+-selective ap...

متن کامل

Permeability Properties of Enac Selectivity Filter Mutants

The epithelial Na(+) channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na(+) absorption. The amiloride-sensitive ENaC is highly selective for Na(+) and Li(+) ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1985